Example 1

1

For an integral j f(x)dx, show that the two-point Gauss
-1

quadrature rule approximates to

[f@de~ e f(x)+e, f(x)

where
c =1
c, =1
1
X, = ——3
1
X, = E
Solution

Assuming the formula

jf(x)dx = f(x)+e, f(x,) (EL1)

1 1 1 1
gives exact values for integrals Ildx, jxdx, Ixzdx, and ijdx .
-1 -1 -1 -1

Then

1

[ldx=2=c +c, (E1.2)
|

1

jxdszzclxl +c,x, (E1.3)
-1

1 2

j)czcz’)c:E:clxl2 +e,x, (E1.4)
-1

1

J.x3dx =0= clxl3 + cz)cz3 (EL.5)

-1

Multiplying Equation (E1.3) by xl2 and subtracting from Equation
(E1.5) gives
2 2
ey, (6,2 = x,2)=0 (E1.6)

The solution to the above equation is
¢, =0, or/and
x, =0, or/and
X, = Xx,, or/and

X, =—X,.



I. ¢, =0 is not acceptable as Equations (E1.2-E1.5) reduce to
2 :
¢, =2, ¢,x, =0, cx/ =3 and ¢,x] =0. Butsince ¢, =2,
then x, =0 from ¢x, =0, but x =0 conflicts with
2

2 _
CxX, =—.

3

II. x, =0 is not acceptable as Equations (E1.2-E1.5) reduce to
2 .

c,+e, =2, c¢x =0, cx’ =3 and ¢,x; =0. Since

¢,x, =0, then ¢, or x, has to be zero but this violates

c,x; :§¢0.

III.  x, = x, is not acceptable as Equations (E1.2-E1.5) reduce to
¢, +c, =2, X, +c,x, =0, c,x; + cle2 = 3’ and

cx;+c,x) =0. If x,#0, then ¢x, +c,x, =0 gives
¢, + ¢, =0 and that violates ¢, +c, =2. If x, =0, then that

. » 2
violates ¢, x; +c,x,” == #0.

That leaves the solution of x, =—x, as the only possible

acceptable solution and in fact, it does not have violations (see it
for yourself)
X, =—X, (EL.7)

Substituting (E1.7) in Equation (E1.3) gives
¢ =c, (EL.8)

From Equations (E1.2) and (E1.8),
¢ =c,=1 (E1.9)
Equations (E1.4) and (E1.9) gives

X +x, :% (E1.10)



Since Equation (E1.7) requires that the two results be of opposite
sign, we get
1

X, =——3
1
NG

X, =

Hence
[ e =c f(x)+erf(x,)
_ (E1.11)

YIRS

Example 2

b
For an integral I f(x)dx, derive the one-point Gauss quadrature

a

rule.

Solution

The one-point Gauss quadrature rule is

T f(x)dx ~c f(x,) (E2.1)

1
Assuming the formula gives exact values for integrals Ildx, and
-1
1

jxdx
-1
b
J-ldx =b-a=c
b 2 2
J.xdx = b —a =X, (E2.2)

a

Since ¢, = b—a, the other equation becomes

2 2
b”—a

(b—a)x, =

b+a
2

X, =

(E2.3)

Therefore, one-point Gauss quadrature rule can be expressed as

[ rydx = (b~ a) f[b ; “j (E2.4)




Example 3

What would be the formula for
b
[/ @ydx = e, f(a)+ e, f(b)

if you want the above formula to give you exact values of
b
J.(aox+b0x2 )dx, that is, a linear combination of x and x°.

a

Solution

If the formula is exact for a linear combination of x and x?, then

b 2 2

dexz b —a =ca+c,b

b 33

J.xzdxz b 3a =ca’ +c,b’ (E3.1)

Solving the two Equations (E3.1) simultaneously gives

2_ g2
a b (O _ 2
a> bllc,| | b’ -d’
3
1 —ab-b*+24*
c, =—=
6 a
2 12
czz—é—“ ”2’ 2 (E3.2)
So
b 2 2 2 2
1 —ab—-b" +2a la +ab-2b
[ fo)de = —— f(a)—————/(b)
/ 6 a 6 b
(E3.3)

Let us see if the formula works.
5

Evaluate I(2x2 - 3x)dx using Equation(E3.3)

2

(25> = 3x)dx ~ ¢, f(a) + ¢, £ (b)

1O Sy 1

6 2 5

=46.5

- OO oy 5] LER2O 20 sy



5
The exact value of j(2x2 - 3x)dx is given by

2

(2x2—3x)i = E—ﬁ 5
132

2

| o=

46.5

Any surprises?

5
Now evaluate I 3dx using Equation (E3.3)
2

jm ~ e f(a)+c,f(b)
__12209)-542Q) ) 1274265)-26)" 5
6 2 6 5
=10.35

5
The exact value of j3dx is given by
2

5
J3dx = [3x]§
2

=9

Because the formula will only give exact values for linear
combinations of x and x°, it does not work exactly even for a

5
simple integral of I3dx .
2

Do you see now why we choose a,+a,x as the integrand for
which the formula

[r@dx=c f@)+e, /()

gives us exact values?



Example 4

Use two-point Gauss quadrature rule to approximate the distance
covered by a rocket from ¢ =8 to # =30 as given by

30
x= j (2000 h{ 140000 } - 9.8tjdt
) 140000 — 21007

Also, find the absolute relative true error.

Solution
First, change the limits of integration from [8, 30] to [~1, 1] using
Equation(23) gives

30 1
30-8 30-8 30+8
Hdt = X+ dx
!f() : jf[ : : j

1
= 1] f(11x+19)dx
-1

Next, get weighting factors and function argument values from
Table 1 for the two point rule,

¢, = 1.000000000.
x, =—-0.577350269
¢, = 1.000000000
x, = 0.577350269
Now we can use the Gauss quadrature formula

llj.f(l Ix+19)dx = 1[e, f(11x, +19)+c, f(11x, +19)]

=11[£(11(=0.5773503) +19)+ £(11(0.5773503) +19)]
=11[£(12.64915) + £(25.35085)]
=11[(296.8317) + (708.4811)]
=11058.44 m
since
140000
140000 — 2100(12.64915)

f(12.64915) = ZOOOIn{ }—9.8(12.64915)

=296.8317
140000
140000 —2100(25.35085)

£(25.35085) = 20001n[ } —9.8(25.35085)

=708.4811
The absolute relative true error,

Et
11061.34 —11058.44|

IE’|:| 06134 |0
= 0.0262%

, 18 (True value = 11061.34 m)




Example 5

Use three-point Gauss quadrature rule to approximate the distance
covered by a rocket from ¢ =8 to ¢ =30 as given by

30
x=| 200011{ 140000 } ~9.8¢ |dr
. 140000 —2100¢
Also, find the absolute relative true error.

Solution
First, change the limits of integration from [8, 30] to [~1, 1] using
Equation (23) gives

30 1
30-8 30-8 30+8
Hdt = + d
!f() : jf[ Xt jx

1
= 1] f(11x+19)dx
-1

The weighting factors and function argument values are
¢, = 0.555555556

x, =—0.774596669
c, = 0.888888889
x, = 0.000000000
¢, = 0.555555556

x; = 0.774596669
and the formula is

1
11jf(1 Ix+19)dx = 1[e, f(11x, +19)+c, f(11x, +19)+¢, f(11x, +19)]
-1

1 0.5555556 1 (11(~.7745967) +19)+ 0.8888889 £(11(0.0000000) +19)
| +0.5555556 £(11(0.7745967) +19)

=11[0.55556 f(10.47944) + 0.88889 £(19.00000) + 0.55556 1 (27.52056)]

=1 1[0.55556 x239.3327 +0.88889 x 484.7455 + 0.55556 x 795. 1069]

=11061.31 m
since

£(10.47944) = 20001n 140000 ~9.8(10.47944)
| 140000 —2100(10.47944) |

= 239.3327

140000

£(19.00000) =20001n
| 140000 —2100(19.00000) |

—9.8(19.00000)

= 484.7455



140000
140000 —2100(27.52056)

£(27.52056) = 2000 ln[ } —9.8(27.52056)

=795.1069

The absolute relative true error,

€,|, 1s (True value = 11061.34 m)
c _[11061.34-11061.31
1 1106134 |

=0.0003%

x100




