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Assuming the formula  
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Multiplying Equation (E1.3) by 2
1x  and subtracting from Equation 

(E1.5) gives 
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The solution to the above equation is 
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I. 02 c  is not acceptable as Equations (E1.2-E1.5) reduce to 
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II. 02 x  is not acceptable as Equations (E1.2-E1.5) reduce to 

221  cc , ,011 xc  ,
3

22
11 xc  and 03

11 xc .  Since 

011 xc , then 1c  or 1x  has to be zero but this violates 

0
3

22
11 xc . 

 
 

III.  21 xx   is not acceptable as Equations (E1.2-E1.5) reduce to 
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That leaves the solution of 21 xx   as the only possible 
acceptable solution and in fact, it does not have violations (see it 
for yourself) 
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Substituting (E1.7) in Equation (E1.3) gives 
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From Equations (E1.2) and (E1.8), 
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Equations (E1.4) and (E1.9) gives 
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Since Equation (E1.7) requires that the two results be of opposite 
sign, we get 
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Example 2 

For an integral ,)(
b

a

dxxf  derive the one-point Gauss quadrature 

rule. 
 

Solution 

The one-point Gauss quadrature rule is 
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Assuming the formula gives exact values for integrals ,1
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Since ,1 abc   the other equation becomes 
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Therefore, one-point Gauss quadrature rule can be expressed as 
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Example 3 

 
What would be the formula for  

 
if you want the above formula to give you exact values of 
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dxxbxa  that is, a linear combination of x  and 2x . 

 

Solution  

If the formula is exact for a linear combination of x  and 2x , then 
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Solving the two Equations (E3.1) simultaneously gives 
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Let us see if the formula works. 

Evaluate   
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The exact value of   
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Any surprises?   

Now evaluate 
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The exact value of 
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Because the formula will only give exact values for linear 
combinations of x  and 2x , it does not work exactly even for a 

simple integral of 
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Do you see now why we choose xaa 10   as the integrand for 

which the formula 
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gives us exact values? 
 
 

 

 

 

 

 

 

 
 
 



 

Example 4 

Use two-point Gauss quadrature rule to approximate the distance 
covered by a rocket from 8t  to 30t  as given by 
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Also, find the absolute relative true error. 
 

Solution  

First, change the limits of integration from  30,8  to  1,1  using 
Equation(23) gives 
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Next, get weighting factors and function argument values from 
Table 1 for the two point rule, 

000000000.11 c . 

577350269.01 x  
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Now we can use the Gauss quadrature formula 
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The absolute relative true error, t , is (True value = 11061.34 m) 
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Example 5 

Use three-point Gauss quadrature rule to approximate the distance 
covered by a rocket from 8t  to 30t  as given by 
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Also, find the absolute relative true error. 
 

Solution  

First, change the limits of integration from  30,8  to  1,1  using 
Equation (23) gives 
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The weighting factors and function argument values are 
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888888889.02 c  
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and the formula is 
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The absolute relative true error, t , is (True value = 11061.34 m) 

100
34.11061

31.1106134.11061



t  

       %0003.0  


