
Derivation of two-point Gauss quadrature rule 
 
 
Method 1: 
The two-point Gauss quadrature rule is an extension of the 
trapezoidal rule approximation where the arguments of the 
function are not predetermined as a  and b , but as unknowns 1x  

and 2x .  So in the two-point Gauss quadrature rule, the integral is 
approximated as 
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There are four unknowns 1x , 2x , 1c  and 2c .  These are found by 
assuming that the formula gives exact results for integrating a 
general third order polynomial, 3
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The formula would then give 
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Equating Equations (8) and (9) gives 
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Since in Equation (10), the constants ,0a  ,1a  ,2a  and 3a  are 

arbitrary, the coefficients of ,0a  ,1a  ,2a  and 3a are equal.  This 

gives us four equations as follows. 
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Without proof (see Example 1 for proof of a related problem), we 
can find that the above four simultaneous nonlinear equations have 
only one acceptable solution 
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Method 2: 
We can derive the same formula by assuming that the expression 

gives exact values for the individual integrals of ,1
b
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dxx3 .  The reason the formula can also be derived 

using this method is that the linear combination of the above 
integrands is a general third order polynomial given by
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These will give four equations as follows 
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These four simultaneous nonlinear equations can be solved to give 
a single acceptable solution 
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Hence 
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Since two points are chosen, it is called the two-point Gauss 
quadrature rule.  Higher point versions can also be developed. 
 


