Derivation of two-point Gauss quadrature rule

Method 1:

The two-point Gauss quadrature rule is an extension of the
trapezoidal rule approximation where the arguments of the
function are not predetermined as a and b, but as unknowns x,
and x,. So in the two-point Gauss quadrature rule, the integral is
approximated as

= j F(x)dx
~e f(x)+e, f(x,)

There are four unknowns x,, x,, ¢, and c¢,. These are found by
assuming that the formula gives exact results for integrating a
general third order polynomial, f(x)=a,+a,x+a,x’ +a,x’.

Hence
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bf(x)dx = |la, + a,x + a,x* + a,x’ Jdx
Jre= ki
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The formula would then give
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Equating Equations (8) and (9) gives
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Since in Equation (10), the constants a,, a,, a,, and a, are
arbitrary, the coefficients of a,, a,, a,, and a,are equal. This

gives us four equations as follows.
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Without proof (see Example 1 for proof of a related problem), we
can find that the above four simultaneous nonlinear equations have
only one acceptable solution
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Hence
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Method 2:

We can derive the same formula by assuming that the expression
b b

gives exact values for the individual integrals of jldx, I xdx,

a a
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J-xzdx, and Ix3 dx. The reason the formula can also be derived

using this method is that the linear combination of the above
integrands is a general third order polynomial given by
f(x)=a, +a,x+a,x* +a,x’.

These will give four equations as follows
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These four simultaneous nonlinear equations can be solved to give
a single acceptable solution
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Hence
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Since two points are chosen, it is called the two-point Gauss
quadrature rule. Higher point versions can also be developed.
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