
Example 1 

 
The upward velocity of a rocket is given as a function of time in 
Table 1. 
 

Table 1 Velocity as a function of time. 
(s)t  )m/s()(tv

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
Determine the distance, ,s  covered by the rocket from 11t  to 

16t  using the velocity data provided and use any applicable 
numerical technique.  
 
 

Solution 

Method 1: Average Velocity Method 
The velocity of the rocket is not provided at 11t  and ,16t  so 

we will have to use an interval that includes  16,11  to find the 
average velocity of the rocket within that range.  In this case, the 
interval  20,10  will suffice. 
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Figure 1 Velocity vs. time data for the rocket example 
 
 
Using 
 ,tvs    
we get 
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Method 2: Trapezoidal Rule 
If we were finding the distance traveled between times in the data 
table, we would simply find the area of the trapezoids with the 
corner points given as the velocity and time data points.  For 
example 
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and applying the trapezoidal rule over each of the above integrals 
gives 
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The values of )10(v , )15(v  and )20(v  are given in Table 1. 
However, we are interested in finding 
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and applying the trapezoidal rule over each of the above integrals 
gives 
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How do we find )11(v  and )16(v ?   We use linear interpolation.  
To find )11(v ,  

  ,10148.2704.227)(  ttv  1510  t  

  1011148.2704.227)11( v  
                   m/s19.254  
and to find )16(v  

  ,15913.3078.362)(  ttv  2015  t  

  1516913.3078.362)16( v  
          m/s69.393  
Then 
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Method 3: Polynomial interpolation to find the velocity profile 
Because we are finding the area under the curve from  ,20,10  we 
must use three points, ,10t  ,15t  and ,20t  to fit a quadratic 
polynomial through the data.  Using polynomial interpolation, our 
resulting velocity function is (refer to notes on direct method of 
interpolation) 
 
   .2010,3766.0733.1705.12 2  ttttv  
 
Now, we simply take the integral of the quadratic within our limits, 
giving us 
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Method 4: Spline interpolation to find the velocity profile 
Fitting quadratic splines (refer to notes on spline method of 
interpolation) through the data results in the following set of 
quadratics 

,704.22)( ttv      100  t  

        ,88.88928.48888.0 2  tt   1510  t  

        ,61.14166.351356.0 2  tt   2015  t  

        ,55.554956.336048.1 2  tt   5.2220  t  

        ,13.15286.2820889.0 2  tt   305.22  t  
The value of the integral would then simply be 
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