Example 2

The upward velocity of a rocket is given as a function of time as

Table 3	Velocity as a function of time.
---------	---------------------------------

<i>t</i> (s)	v(t) (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

- a) Determine the value of the velocity at t = 16 seconds using quadratic splines.
- b) Using the quadratic splines as velocity functions, find the distance covered by the rocket from t = 11s to t = 16s.
- c) Using the quadratic splines as velocity functions, find the acceleration of the rocket at t = 16s.

Solution

a) Since there are six data points, five quadratic splines pass through them.

$$v(t) = a_1 t^2 + b_1 t + c_1, \quad 0 \le t \le 10$$

$$= a_2 t^2 + b_2 t + c_2, \quad 10 \le t \le 15$$

$$= a_3 t^2 + b_3 t + c_3, \quad 15 \le t \le 20$$

$$= a_4 t^2 + b_4 t + c_4, \quad 20 \le t \le 22.5$$

$$= a_5 t^2 + b_5 t + c_5, \quad 22.5 \le t \le 30$$

The equations are found as follows.

1. Each quadratic spline passes through two consecutive data points.

$$a_1t^2 + b_1t + c_1$$
 passes through $t = 0$ and $t = 10$.

$$a_1(0)^2 + b_1(0) + c_1 = 0$$
 (1)

$$a_1(10)^2 + b_1(10) + c_1 = 227.04$$
 (2)

 $a_2t^2 + b_2t + c_2$ passes through t = 10 and t = 15.

$$a_2(10)^2 + b_2(10) + c_2 = 227.04$$
 (3)

$$a_2(15)^2 + b_2(15) + c_2 = 362.78$$
 (4)

 $a_3t^2 + b_3t + c_3$ passes through t = 15 and t = 20.

$$a_3(15)^2 + b_3(15) + c_3 = 362.78$$
 (5)

$$a_3(20)^2 + b_3(20) + c_3 = 517.35$$
 (6)

$$a_4 t^2 + b_4 t + c_4$$
 passes through $t = 20$ and $t = 22.5$.
 $a_4 (20)^2 + b_4 (20) + c_4 = 517.35$ (7)
 $a_4 (22.5)^2 + b_4 (22.5) + c_4 = 602.97$ (8)

$$a_5 t^2 + b_5 t + c_5$$
 passes through $t = 22.5$ and $t = 30$.
 $a_5 (22.5)^2 + b_5 (22.5) + c_5 = 602.97$ (9)
 $a_5 (30)^2 + b_5 (30) + c_5 = 901.67$ (10)

2. Quadratic splines have continuous derivatives at the interior data points.

At
$$t = 10$$

$$2a_1(10) + b_1 - 2a_2(10) - b_2 = 0$$
(11)

At
$$t = 15$$

$$2a_2(15) + b_2 - 2a_3(15) - b_3 = 0$$
 (12)

At
$$t = 20$$

$$2a_3(20) + b_3 - 2a_4(20) - b_4 = 0$$
 (13)

At
$$t = 22.5$$

 $2a_4(22.5) + b_4 - 2a_5(22.5) - b_5 = 0$ (14)

3. Assuming the first spline
$$a_1t^2 + b_1t + c_1$$
 is linear,
 $a_1 = 0$ (15)

Combining Equation (1) - (15) in matrix form gives

Solving the above 15 equations give the 15 unknowns as

i	a_i	b_{i}	C_i
1	0	22.704	0
2	0.8888	4.928	88.88
3	-0.1356	35.66	-141.61
4	1.6048	-33.956	554.55
5	0.20889	28.86	-152.13

Therefore, the splines are given by

$$v(t) = 22.704t, 0 \le t \le 10$$

$$= 0.8888t^{2} + 4.928t + 88.88, 10 \le t \le 15$$

$$= -0.1356t^{2} + 35.66t - 141.61, 15 \le t \le 20$$

$$= 1.6048t^{2} - 33.956t + 554.55, 20 \le t \le 22.5$$

$$= 0.20889t^{2} + 28.86t - 152.13, 22.5 \le t \le 30$$

At t = 16s

$$v(16) = -0.1356(16)^2 + 35.66(16) - 141.61$$
$$= 394.24 \,\text{m/s}$$

b) The distance covered by the rocket between 11 and 16 seconds can be calculated as

$$s(16) - s(11) = \int_{11}^{16} v(t)dt$$

But since the splines are valid over different ranges, we need to break the integral accordingly as

$$v(t) = 0.8888t^{2} + 4.928t + 88.88, \quad 10 \le t \le 15$$

$$= -0.1356t^{2} + 35.66t - 141.61, \quad 15 \le t \le 20$$

$$\int_{11}^{16} v(t)dt = \int_{11}^{15} v(t)dt + \int_{15}^{16} v(t)dt$$

$$s(16) - s(11) = \int_{11}^{15} (0.8888t^2 + 4.928t + 88.88)dt + \int_{15}^{16} (-0.1356t^2 + 35.66t - 141.61)dt$$

$$= \left[0.8888 \frac{t^3}{3} + 4.928 \frac{t^2}{2} + 88.88t \right]_{11}^{15}$$

$$+ \left[-0.1356 \frac{t^3}{3} + 35.66 \frac{t^2}{2} - 141.61t \right]_{15}^{16}$$

$$= 1217.35 + 378.53$$

$$= 1595.9 \text{ m}$$

c) What is the acceleration at t = 16?

$$a(16) = \frac{d}{dt}v(t)\Big|_{t=16}$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}(-0.1356t^2 + 35.66t - 141.61)$$

$$= -0.2712t + 35.66, 15 \le t \le 20$$

$$a(16) = -0.2712(16) + 35.66$$

$$= 31.321 \text{ m/s}^2$$