## **Direct Method - Quadratic**

## Example 2

The upward velocity of a rocket is given as a function of time in Table 2.

| ity as a function of |
|----------------------|
| v(t) (m/s)           |
| 0                    |
| 227.04               |
| 362.78               |
| 517.35               |
| 602.97               |
| 901.67               |
|                      |

Table 2Velocity as a function of time.

Determine the value of the velocity at t = 16 seconds using the direct method of interpolation and a second order polynomial.

## Solution

For second order polynomial interpolation (also called quadratic interpolation), the velocity is given by

 $v(t) = a_0 + a_1 t + a_2 t^2$ 

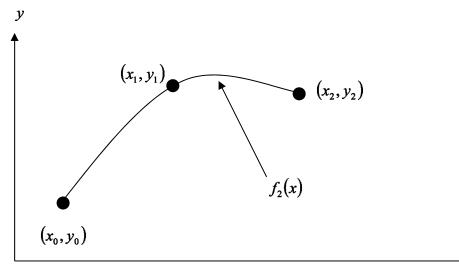



Figure 4 Quadratic interpolation.

x

Since we want to find the velocity at t = 16, and we are using a second order polynomial, we need to choose the three data points that are closest to t = 16 that also bracket t = 16 to evaluate it. The three points are  $t_0 = 10$ ,  $t_1 = 15$ , and  $t_2 = 20$ . Then

$$t_0 = 10, v(t_0) = 227.04$$
  
 $t_1 = 15, v(t_1) = 362.78$   
 $t_2 = 20, v(t_2) = 517.35$ 

gives

$$v(10) = a_0 + a_1(10) + a_2(10)^2 = 227.04$$
  

$$v(15) = a_0 + a_1(15) + a_2(15)^2 = 362.78$$
  

$$v(20) = a_0 + a_1(20) + a_2(20)^2 = 517.35$$

Writing the three equations in matrix form, we have

| [1 | 10 | 100 | $\begin{bmatrix} a_0 \end{bmatrix}$ |   | [227.04] |  |
|----|----|-----|-------------------------------------|---|----------|--|
| 1  | 15 | 225 | $a_1$                               | = | 362.78   |  |
| 1  | 20 | 400 | $a_2$                               |   | 517.35   |  |

Solving the above three equations gives

$$a_0 = 12.05$$
  
 $a_1 = 17.733$   
 $a_2 = 0.3766$ 

Hence

$$v(t) = 12.05 + 17.733t + 0.3766t^2, \ 10 \le t \le 20$$

At 
$$t = 16$$
,  
 $v(16) = 12.05 + 17.733(16) + 0.3766(16)^2$   
 $= 392.19 \text{ m/s}$ 

The absolute relative approximate error  $|\epsilon_a|$  obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.70}{392.19} \right| \times 100$$
$$= 0.38410\%$$