Introduction

What is interpolation?

Many times, data is given only at discrete points such as (x_0, y_0) , (x_1, y_1) ,, (x_{n-1}, y_{n-1}) , (x_n, y_n) . So, how then does one find the value of y at any other value of x? Well, a continuous function f(x) may be used to represent the n+1 data values with f(x) passing through the n+1 points (Figure 1). Then one can find the value of y at any other value of x. This is called *interpolation*.

Of course, if x falls outside the range of x for which the data is given, it is no longer interpolation but instead is called *extrapolation*.

So what kind of function f(x) should one choose?

A polynomial is a common choice for an interpolating function because polynomials are easy to

- (A) evaluate,
- (B) differentiate, and
- (C) integrate

relative to other choices such as a trigonometric and exponential series.

Polynomial interpolation involves finding a polynomial of order n that passes through the n+1 points. One of the methods of interpolation is called the direct method. Other methods include Newton's divided difference polynomial method and the Lagrangian interpolation method. We will discuss the direct method in this chapter.

Figure 1 Interpolation of discrete data.