4. Root jumping

In some case where the function f(x) is oscillating and has a number of roots, one may choose an initial guess close to a root. However, the guesses may jump and converge to some other root. For example for solving the equation $\sin x = 0$ if you choose $x_0 = 2.4\pi = (7.539822)$ as an initial guess, it converges to the root of x = 0 as shown in Table 4 and Figure 6. However, one may have chosen this as an initial guess to converge to $x = 2\pi = 6.2831853$.

Iteration	r.	$f(\mathbf{x})$	e %
Number	\mathcal{N}_{i}	$\int (x_i)$	$ C_a ^{70}$
0	7.539822	0.951	
1	4.462	-0.969	68.973
2	0.5499	0.5226	711.44
3	-0.06307	-0.06303	971.91
4	8.376×10 ⁻⁴	8.375×10 ⁻⁵	7.54×10^4
5	-1.95861×10^{-13}	-1.95861×10^{-13}	4.28×10^{10}

Table 4Root jumping in Newton-Raphson method.

Figure 6 Root jumping from intended location of root for $f(x) = \sin x = 0$.