
Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that 

makes floats for ABC commodes.  The floating ball has a specific 

gravity of 0.6 and has a radius of 5.5 cm.  You are asked to find the 

depth to which the ball is submerged when floating in water. 

 

 
Figure 2   Floating ball problem. 

 

The equation that gives the depth x  in meters to which the ball is 

submerged under water is given by 

010993.3165.0 423  xx  

Use the Newton-Raphson method of finding roots of equations to 

find  

a) the depth x  to which the ball is submerged under 

water.  Conduct three iterations to estimate the root of 

the above equation.   

b) the absolute relative approximate error at the end of 

each iteration, and  

c) the number of significant digits at least correct at the 

end of each iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solution 

  423 10993.31650  x.xxf  

  x.xxf 3303 2   

Let us assume the initial guess of the root of   0xf  is 

..x m 0500    This is a reasonable guess (discuss why 0x  and 

m 11.0x  are not good choices) as the extreme values of the 

depth x  would be 0 and the diameter (0.11 m) of the ball.   

 

Iteration 1  

The estimate of the root is 
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The number of significant digits at least correct is 0, as you need 

an absolute relative approximate error of 5% or less for at least one 

significant digit to be correct in your result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Iteration 2 

The estimate of the root is 
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The absolute relative approximate error a  at the end of Iteration 

2 is 
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The maximum value of m  for which m

a

 2105.0  is 2.844.  

Hence, the number of significant digits at least correct in the 

answer is 2. 

 

Iteration 3 

The estimate of the root is 
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The absolute relative approximate error a  at the end of Iteration 
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The number of significant digits at least correct is 4, as only 4 

significant digits are carried through in all the calculations. 

 


