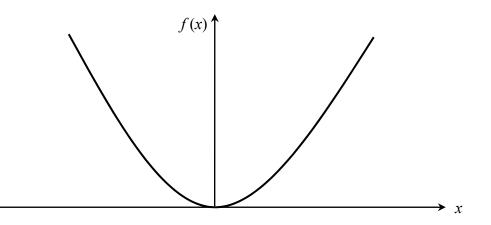
Drawbacks of bisection method

- a) The convergence of the bisection method is slow as it is simply based on halving the interval.
- b) If one of the initial guesses is closer to the root, it will take larger number of iterations to reach the root.
- c) If a function f(x) is such that it just touches the x-axis(Figure 6) such as

$$f(x) = x^2 = 0$$

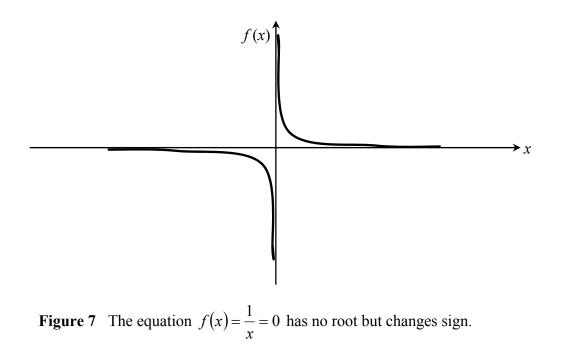
it will be unable to find the lower guess, x_{ℓ} , and upper guess, x_{μ} , such that

 $f(x_{\ell})f(x_{u}) < 0$


d) For functions f(x) where there is a singularity¹ and it reverses sign at the singularity, the bisection method may converge on the singularity (Figure 7). An example includes

$$f(x) = \frac{1}{x}$$

where $x_{\ell} = -2$, $x_u = 3$ are valid initial guesses which satisfy


 $f(x_{\ell})f(x_{u}) < 0$

However, the function is not continuous and the theorem that a root exists is also not applicable.

Figure 6 The equation $f(x) = x^2 = 0$ has a single root at x = 0 that cannot be bracketed.

¹ A singularity in a function is defined as a point where the function becomes infinite. For example, for a function such as 1/x, the point of singularity is x = 0 as it becomes infinite.

