Example 2

The upward velocity of a rocket is given as a function of time in Table 2.

time.	<u>.</u>		
<i>t</i> (s)	v(t) (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		

Table 1 Velocity as a function of

Using a third order polynomial interpolant for velocity, find the acceleration of the rocket at t = 16 s.

Solution

For the third order polynomial (also called cubic interpolation), we choose the velocity given by

 $v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$

Since we want to find the velocity at t = 16 s, and we are using a third order polynomial, we need to choose the four points closest to t = 16 and that also bracket t = 16 to evaluate it.

The four points are $t_0 = 10, t_1 = 15, t_2 = 20$ and $t_3 = 22.5$.

$$t_0 = 10, v(t_0) = 227.04$$

$$t_1 = 15, v(t_1) = 362.78$$

$$t_2 = 20, v(t_2) = 517.35$$

$$t_3 = 22.5, v(t_3) = 602.97$$

such that

$$v(10) = 227.04 = a_0 + a_1(10) + a_2(10)^2 + a_3(10)^3$$

$$v(15) = 362.78 = a_0 + a_1(15) + a_2(15)^2 + a_3(15)^3$$

$$v(20) = 517.35 = a_0 + a_1(20) + a_2(20)^2 + a_3(20)^3$$

$$v(22.5) = 602.97 = a_0 + a_1(22.5) + a_2(22.5)^2 + a_3(22.5)^3$$

Writing the four equations in matrix form, we have

1	10	100	1000	$\begin{bmatrix} a_0 \end{bmatrix}$	=	227.04
1	15	225	3375	a_1		362.78
1	20	400	8000	a_2		517.35
1	22.5	506.25	11391	$\lfloor a_3 \rfloor$		602.97

Figure 2 Graph of upward velocity of the rocket vs. time.

Solving the above four equations gives

 $a_0 = -4.3810$ $a_1 = 21.289$ $a_2 = 0.13065$ $a_3 = 0.0054606$

Hence

$$v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

 $= -4.3810 + 21.289t + 0.13065t^{2} + 0.0054606t^{3}, \ 10 \le t \le 22.5$ The acceleration at t = 16 is given by

$$a(16) = \frac{d}{dt} v(t)\Big|_{t=16}$$

Giv

Given that

$$v(t) = -4.3810 + 21.289t + 0.13065t^{2} + 0.0054606t^{3}, \ 10 \le t \le 22.5,$$

$$a(t) = \frac{d}{dt}v(t)$$

$$= \frac{d}{dt}(-4.3810 + 21.289t + 0.13065t^{2} + 0.0054606t^{3})$$

$$= 21.289 + 0.26130t + 0.016382t^{2}, \ 10 \le t \le 22.5$$

$$a(16) = 21.289 + 0.26130(16) + 0.016382(16)^{2}$$

$$= 29.664 \text{ m/s}^{2}$$