Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

<i>t</i> (s)	<i>v</i> (<i>t</i>) (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

 Table 1 Velocity as a function of time.

Using forward divided difference, find the acceleration of the rocket at t = 16 s.

Solution

To find the acceleration at t = 16 s, we need to choose the two values of velocity closest to t = 16 s, that also bracket t = 16 s to evaluate it. The two points are t = 15 s and t = 20 s

$$a(t_{i}) \approx \frac{\nu(t_{i+1}) - \nu(t_{i})}{\Delta t}$$

$$t_{i} = 15$$

$$t_{i+1} = 20$$

$$\Delta t = t_{i+1} - t_{i}$$

$$= 20 - 15$$

$$= 5$$

$$a(16) \approx \frac{\nu(20) - \nu(15)}{5}$$

$$= \frac{517.35 - 362.78}{5}$$

$$= 30.914 \text{ m/s}^{2}$$